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Lecture 9

• Statistical Circuit Modeling



How important is statistical analysis?
Example:   7-bit FLASH ADC with R-string DAC
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Assume R-string is ideal, VREF=1V and VOS for

each comparator must be at most  +/- ½ LSB

Case 1

Standard deviation is 5mV

COMPP  = 0.565

-32
ADCY =3.2 10•

COMPP  0.999904=

ADCY =0.988

Case 2

Standard deviation is 1mV

Statistics play a key role in the performance and consequently yield of a data converter

Recall from previous lecture

Review from last lecture



Statistical Analysis Strategy

Will first focus on statistical characterization of 

resistors, then extend to capacitors and transistors 

Every resistor R can be expressed as

R=RN+RRP+RRW+RRD+RRGRAD+RRL

where RN is the nominal value of the resistor and the remaining terms are 

all random variables

RRP: Random process variations         RRGRAD: Random gradient variations

RRW: Random wafer variations            RRL: Local Random Variations

RRD:  Random die variations

• Data Converters (ADCs and DACs) are ratiometric devices and performance 

often dominated by ratiometric device characteristics (e.g. matching)  

• Many other AMS functions are dependent upon dimensioned parameters and 

often not dependent upon matching characteristics 



Statistical Analysis Strategy
R=RN+RRP+RRW+RRD+RRGRAD+RRL

RRP: Random process variations         RRGRAD: Random gradient variations

RRW: Random wafer variations            RRL: Local Random Variations

RRD:  Random die variations

RP RW RD   

• All variables globally uncorrelated

• For good common-centroid layouts  gradient effects can be neglected

• Local random variations often much smaller than RRP, RRW, and RRD though not 

necessarily

• Area dominantly determines σRL, but area has little effect on the other variables

• At the resistor-level on a die, RRP, RRW and RRD highly correlated thus cause no 

mismatch

• Major challenge in data converter design is managing RRL effects

• All zero mean and approximately Gaussian (truncated)

• For dimensioned performance characteristics (e.g. band edge of filter), RRP, 

RRW and RRD are dominant and RRGRAD and RRL typically secondary

R=RN+RR
For notational convenience, assume

RN includes RRP, RRW and RRD, RGRAD neglected, RR=RRL



Resistor Characterization
Resistors are generally made of thin films of conductive or semiconductor materials
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Generally h is very small compared to L and W

Films are often characterized by Sheet Resistance

In the ideal case 1 L L
R=  = R
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Will initially consider characterization of film and later add film terminations



Resistor Characterization
Resistors are generally made of thin films of conductive or semiconductor materials

Film Characterized by Resistivity :  ( )ρ x,y,z

( )
( )

( )

ρ x,y,z
R x,y =

H x,y
Films are often characterized by Sheet Resistance

Ideally ρ(x,y,z) and H(x,y) are independent of position as is R□(x,y)

In the ideal case
1 L L

R=  = R
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Resistor Characterization
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ρ
R =

h

Resistors are generally made of thin films of conductive or semiconductor materials

R

RC1

RC2

ACT C1 C2R = R + R  + R

Will initially consider characterization of film and later add film terminations

Film Terminations 
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Resistor Characterization
Ideally

Actually

• Boundary of resistor varies with position

• ρ(x,y,z) varies with position

• Thickness (H(x,y)) varies with position  

• Properties of resistor vary with position and temperature



Resistor Characterization
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Actually

Boundary of resistor varies

ρ(x,y,z) varies with position

These variations will define RR
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Statistical 

Model

R2

R1

A

B

1 N R1R =R +R

2 N R2R =R +R

2 N R1 R2R =2R +R +RSer

Consider the following resistor circuits

Series Resistor Connection (of two nominally identical devices)

mean 0
R

R

R

R





=

standard deviation

Distribution:  Truncated Gaussian

( )N ~ 0,
RR



Compare the standard deviation of the resistance of 

the series combination with that of a single resistor



Theorem:  If X1, … Xn are uncorrelated random variables and a1, .. an are

real numbers, then the random variable Y defined by

has mean and variance given by

where  μi and σi are the mean and variance of Xi for i=1,…n.

n

i i
i=1

Y = a X

n

Y i i
i=1

μ = aμ

( )
n

2
Y i i

i=1

σ = aσ

Consider the following well-known Theorem:



R2

R1
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1 N R1R =R +R

2 N R2R =R +R 2 N R1 R2R =2R +R +RSer

Series Resistor Connection

From Theorem 2= 2
RSer R 

Extending to n-resistors that are nominally identical
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N Rk

1

R =nR + R
n

Sern

k=



RR= nSern 

( )N~ 0, 2
RR



( )
RRN ~ 0, n

(of nominally identical devices)



Summary of Results

Structure Nominal

Resistance

Standard 

Deviation

Normalized 

Standard

Deviation

R RN

RRnSer nR nRN

RR

Note increasing the resistance by a factor of n increased  the standard 

deviation by n



Normalized Statistical Characterization
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From previous theorem:
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For series connection of n ideally identical resistors (identical in both value and structure) 
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Note increasing the resistance by a factor of n dropped the normalized 

standard deviation by n



Summary of Results

Structure Nominal

Resistance

Standard 

Deviation

Normalized 

Standard

Deviation

R RN

RRnSer nR nRN

RR=R 

Note increasing the resistance by a factor of n  (identical in both value and structure) 

increased  the standard deviation by n

1
R

N

R

Rn


R

N

R

R



Note increasing the resistance by a factor of n decreased  the 

normalized standard deviation by n



1 N R1R =R +R

2 N R2R =R +R

Parallel Resistor Connection
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• The random variable RPar2 is highly nonlinear in RR1 and RR2

• Some very good approximations of RPar2 can be made that linearize the 

expression



1 N R1R =R +R

2 N R2R =R +R

Parallel Resistor Connection

From Theorem (identical in both value and structure) 
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Parallel Resistor Connection

Consider normalized variance
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And for n in parallel (identical in both value and structure) 
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Note decreasing the resistance by a factor of n dropped the standard 

deviation by n
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Summary of Results

Structure Nominal

Resistance

Standard 

Deviation

Normalized 

Standard

Deviation

R RN

RRnSer nR nRN

RR=R 

Note increasing or decreasing the resistance by a factor of n decreased 

the normalized standard deviation by n
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Note increasing the area by a factor of n decreased  the normalized 

standard deviation by n
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What is the relationship between resistance, area, and standard deviation?

(for ideally identical in both value and structure) 



Note making no change in the resistance reduced the standard 

deviation by 2

Note  increasing the area by a factor of 4 dropped the standard 

deviation by 2

R2R1

A

R4R3
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Consider parallel/series combination of 4 nominally identical resistors 
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(identical in both value and structure) 



Summary of Results

Structure Nominal

Resistance
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Normalized 

Standard
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Observation:

• In all cases, increasing the area by a factor of n decreases 

the normalized standard deviation by sqrt (n) 

• These structures were all configured to have the same nominal 

current density.  Without the equal current density  requirement, 

results would differ 

2RN
2RN

Example:  Same nominal resistance but different current density and different variances



Have considered in previous examples the following scenarios

• Current density is uniform in each structure

• Aspect ratio plays no role in normalized performance

• Resistance value plays no role in normalized performance

• Only factor in normalized performance is area

• For a given resistance, each factor of 2 reduction in σ requires a 

    factor of 4 increase in area



Key Implications:

If yield of a data converter is determined by matching 

performance, then every bit increment in performance 

will require at least a factor of 2 reduction in σ and 

correspondingly a factor of  4 increase in the area for 

the matching critical components if the same yield is 

to be obtained.



Formalize Resistor Characterization Concepts
Assume lithography is perfect, statistics of R□ not position dependent, no 

gradient effects, and no contact resistance

( )R x,y : Sheet resistance at (x,y)

Most authors assume:
( )

A
EQ

R x,y dxdy

R
A

=
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A=WL

1 2z z EQ

L
R R

W
=

L

x

y
W

(x,y)

z1 z2

We will make this same “standard” assumption



( )

EQ
model

1 2A

R x,y dxdy
R +R

R   =   
A 2





Counter example showing limitations of standard assumption

If ε is small and WX large

Assume sheet resistance constant in yellow region of value R□1 and constant in

purple region of value R□2 

AB 1
L

R R
W

 
  

 

If R□1 and R□2 are not equal, then  R□EQ≠ R□1 

Though errors can be big, in practical processes  for structures with identical current density 

throughout, the assumptions are probably pretty good ! 

W W

L

ε

WX

A

B

R 1 R 2

EQ 1R R

but



Consider a square reference resistor of width 1µm
Define REF to be the resistance of the reference resistor.  

Since it is square of area 1u2, the equivalent sheet 

resistance of the reference resistor is equal to REF

Assume the standard deviation of this reference resistor, 

due to local random variations in sheet resistance, is  σREF

B2

W 

L 

B1Consider now a resistor of length L and width W

Define the equivalent sheet resistance of this resistor: R□EQ

R□EQ  is a random variable with a nominal value of R□N  

and standard deviation that satisfies the expression

2 2
2
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REF REF
R

W L A

 
 = =

•

It follows that the value of the resistor R is given by the expression
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L
R R

W
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1µ 1µ 



Consider a  resistor of width W and length L

B2

W 

L 

B1

Consider now the normalized resistance

NN

L
R R

W
=

Thus the normalized resistance variance is given by the expression

2 2
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REF REF

L W L

W R L W WL R

It follows that 

The term on the right in [ ] is the ratio of two process parameters so define 

the process parameter AR by the expression REF
R

N

A
R


=

N

2 2
2 R R
R

R

A A

WL A
 = =

AR is more convenient to use than both σREF and R□N

Will term AR the “Pelgrom parameter” (though Pelgrom only presented results for MOS devices)

Note σR is dependent on resistance value

Note σR/RN is not dependent on resistance value



Recall:
N

R
R

R

A

A
 = REF

R

N

A
R


=where

How can AR be obtained?

1. Obtain AR from a PDK

2. Build a test structure to obtain AR

Recall:

The mean and variance of a large sample of a random variable are unbiased 

estimators of the mean and variance of the random variable itself

Let x be a random variable with mean µ and standard deviation σ  and let

                     be n samples of the random variable x.   Define µs to be the mean of 

the sample and σs to be the standard deviation of the sample.   Then the statistic 

µs is an unbiased estimator of µ and the statistic            is an unbiased estimator 

of σ 

 
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n

i i
X x

=
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1
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n

n


−

B1

B2

1µ 1µ 
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Strategy 1

SAMPLE
R

SAMPLE

A





REF
R

N

A
R


=

1. Create a test circuit with a large number, n, of 1µ x 1µ resistors

2. Measure R1,…Rn 

3. Calculate the sample standard deviation and sample mean as estimators 

Is this a good strategy for obtaining AR?

No !

• Fringe effects will increase variance

• Gradient effects will skew the results

• Die-level and wafer-level variations will skew the results

• Contact resistances will skew results

A

B

1µ 

y

x

A

B

1µ 

1µ 

1µ 



2 2

_ 3
= • R sample REF

L
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Strategy 2

• If devices are not really close, other random variations will skew 

results that are supposed to characterize local random variations

SAMPLEN

W
R

L


µSAMPLE is the mean resistance of the sample and σR_sample is 

the standard deviation of the sample

_R SAMPLEREF
R

SAMPLEN

LW
A

R




= =

REF
R

N

A
R


=

A

B

W

L

Large Area

Create  n large area test structures, define 

R as the resistance of each test structure

3

_REF R sample

W

L
 =

Is this a good strategy for obtaining AR?

• Significantly reduces the boundary and contact resistance 

associated with the 1µ x 1µ structure
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Gradient Effects
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N N
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1:2

N

R
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

• calculate variance of these samples
N

R

R
SAMPLE




Measurement of ARStrategy  3

N

R R

R

A = •A

N N

R R R

R R

1
A

2SAMPLE SAMPLE
A A 


= • = •

A = area of one resistor  (of 2 of the component 

resistors)

Common 
Centroid

R1A R2A

R1BR2B

• Create 2 resistors, R1 and R2, using 

common centroid layouts 

R1=R1A//R1B     R2=R2A//R2B

• Create a large number of these test 

structures and distribute across a die or 

wafer.  Sample standard deviation is 

Define rv



Lar

Measurement of ARStrategy  3

N

R R

R

1
A

2 SAMPLE
A 


= • R1A R2A

R1BR2B

R1A R2A

R1BR2B

R1A R2A

R1BR2B

R1A R2A

R1BR2B

R1A R2A

R1BR2B

R1A R2A

R1BR2B

R1A R2A

R1BR2B

R1A R2A

R1BR2B

R1A R2A

R1BR2B

Will gradients skew the normalization by RN?

Large number of test structures across die, wafer, 

wafers, or process runs

No, effects will be minor

Assumption is made that AR is not dependent upon gradients or even run-

to-run variations

Designs must be robust to mismatch effects anyway so even small errors in AR 

should not compromise design
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Measurement of ARStrategy  3

R1A R2A

R1BR2B

R1A R2A

R1BR2B

R1A R2A

R1BR2B

R1A R2A

R1BR2B

R1A R2A

R1BR2B

R1A R2A

R1BR2B

R1A R2A

R1BR2B

R1A R2A

R1BR2B

R1A R2A

R1BR2B

Large number of test structures across die, wafer, 

wafers, or process runs

Is this a good strategy for obtaining AR?

N

R R

R

1
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2 SAMPLE
A 
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= •



N N

R R

R R

ˆ
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R
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A
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R
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Measurement of AR

What about just taking a large number 

of resistors at multiple sites on a die, at 

multiple die locations on a wafer, and 

and on many wafers and wafer lots:

Strategy  4

Is this a good strategy for obtaining AR?

No!   Highly dependent upon process variations, wafer variations, and gradients



Measurement of AR

What about having arrays of common 

centroid test structures and taking pair-

wise differences?

Strategy  5

Is this a good strategy for obtaining AR?

Yes!   Get more useful information per unit area than with single pair structures

Common 
Centroid

R1A R2A

R1BR2B

Common 
Centroid

R1A

R1B

R2A

R2B R3B

R3A

R4B

R4A

R5B

R5A

R6B

R6A

R7B

R7A R8A

R8B



Measurement of AR

Regardless of which approach is followed, may need to have dummy 

devices that are nominally the same as the test devices surround test array

R1A

R1B

R2A

R2B R3B

R3A

R4B

R4A

R5B

R5A

R6B

R6A

R7B

R7A R8A

R8B

Common 
Centroid

Sometimes two (or more) rings of dummy devices are used



• Ratio matching is often critical in ADCs and DACs

• Accuracy and matching of gains is also critical in some data 

converters

Ratio Matching Effects in Data Converters



Example:  Amplifier Gain Accuracy

If a ratio of 10:1 is desired, determine the ratio matching accuracy relative to 

the standard deviation of a single resistor.  Assume the 10R resistor realized 

as the series connection of 10 resistors of value R.

What is the yield of these two amplifiers and how do they compare if a given 

gain accuracy requirement is specified?

VIN
VOUT

R
R

VIN
VOUT

R

10R



Amplifier Gain Accuracy

VIN VOUT

R2

R1

2

1

R
A  = -

R
CL

Does the ratio matching accuracy (A) depend upon the magnitude of the gain:

R2:
R21 R22 R2k

R1:
R11

Consider:

Assume ideally R21=R22=…=R2k=R11 and the areas of the resistors are also 

ideally the same.  Define ACL0 to be the nominal gain.

2NOM
0

1NOM

R
A  = - k

R
CL =

Define θ to be the gain error



Amplifier Yield

Assume the closed-loop gain ACL is a Gaussian RV with mean ACL0 and standard 

deviation σACL  where ACL0 is the nominal gain.

Assume yield is defined by amplifiers with a gain that satisfies the expression

( ) ( )CL0 X CL CL0 XA 1 A A 1−    + 

( )CL0 X CL CL0 XY P{A (1 ) A A 1 }= −    + 

( )

( )
CL0 X
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Amplifier Yield
Assume the closed-loop gain ACL is a Gaussian RV with mean ACL0 and standard 

deviation σACL  where ACL0 is the nominal gain

Assume yield is defined by amplifiers with a gain that satisfies the expression
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Thus to obtain yield need to obtain σACL  or 
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Amplifier Gain Accuracy

CL0 CLA A = −
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Gain error

It follows that 
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Amplifier Gain Accuracy
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Amplifier Gain Accuracy

VIN VOUT

16R

R
VIN

4R

R

VOUT

4R

R

Which will have the lowest σ?

Note: RTOT=
17R for Option 1

10R for Option 2

Option 1 Option 2



Amplifier Gain Accuracy

Many different ways to achieve a given gain with a given resistor area

VIN

R

R
VOUT

R R R

VIN

R

R
VOUT

R R

VIN

R

R
VOUT

RR

R

Which will have the best yield?



Stay Safe and Stay Healthy !



End of Lecture 9
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